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Abstract. Remotely sensed estimates of water quality parameters would facilitate efforts in spatial 
and temporal monitoring. In this study we collected hyperspectral water reflectance data with 
airborne and ground-based sensing systems for multiple arms of Mark Twain Lake, a large man-
made reservoir in northeast Missouri. Water samples were also collected and analyzed in the 
laboratory for chlorophyll, nutrients, and turbidity. Wavelength-selection (i.e., stepwise multiple 
regression) methods and previously reported indices were used to develop relationships between 
spectral and water quality data. Within the single measurement date of this study, all measured water 
quality parameters were strongly related (R2 > 0.6) to reflectance data from the ground system. 
Relationships between water quality parameters and airborne reflectance data were generally 
somewhat lower, but still with R2 > 0.6. Previously developed narrow-band reflectance indices also 
worked well to estimate chlorophyll concentration. Wide-band, multispectral reflectance, simulating 
Landsat data, was strongly related only to turbidity and those other parameters (e.g., phosphorus) 
highly correlated to turbidity in this dataset. Thus, hyperspectral sensing, coupled with calibration 
sampling, can be used to estimate lake water quality differences, and appears to have advantages 
over multispectral sensing in this application. 
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Introduction 
Impairment of the environment by agricultural activities is an ongoing concern of agriculturalists, 
environmentalists, and the general public. Many conservation practices, including those 
designed to reduce losses of soil, nutrients, and pesticides from agricultural fields, have a 
primary goal of reducing this impairment. Because environmental quality is in the public interest, 
the US Department of Agriculture (USDA) provides financial incentives to producers for 
implementing such conservation practices on their lands.  

Recently, agencies of the USDA initiated a project to quantify the environmental benefits of 
conservation practices implemented with USDA funding. This Conservation Effects Assessment 
Project (CEAP) includes a national assessment led by the USDA Natural Resources 
Conservation Service and a watershed assessment studies component led by the USDA 
Agricultural Research Service (ARS) (Mausbach and Dedrick, 2004). The watershed component 
of CEAP will provide an in-depth study of environmental effects and benefits for select 
watersheds and provide additional research on conservation practices and their expected 
effects at the watershed scale.  

In Missouri, the ARS Cropping Systems and Water Quality Research Unit is conducting CEAP 
watershed assessment research in the Salt River basin. The Salt River supplies Mark Twain 
Lake, a manmade flood control and water supply reservoir in northeast Missouri. The Missouri 
CEAP research includes a monitoring campaign to characterize the hydrologic balance and 
nutrient/chemical loading to Mark Twain Lake. The core of this monitoring is stream flow 
monitoring and water sampling at 13 sites within the basin. Because these monitoring sites are 
a significant distance upstream from the lake to avoid stagnant conditions at high lake stages, 
we wished to augment this data with a study of water quality variations among the different arms 
of the lake. Remote sensing was considered as a potential method to estimate such water 
quality variations. 

Remote sensing of water quality 

Research has shown that remote sensing can be used to estimate water quality parameters 
such as suspended sediments, turbidity, and chlorophyll. Compared to traditional sample 
collection and analysis approaches, potential advantages of remote sensing include an 
increased spatial and temporal resolution that may be important for assessment and/or 
management of water quality. 

The potential of remote sensing for water quality estimation was first investigated in the early 
1970s, with the development of empirical relationships between spectral properties and water 
quality measurements. As the science of remote sensing has progressed, biophysical models 
have been developed for some relationships, but empirical models are still used in many 
situations. Such empirical models often provide good results. However, it is important to 
recognize that they may only be valid for the specific conditions under which the data were 
collected, and that they should be applied under different conditions only with caution and 
appropriate validation (Ritchie et al., 2003).  

The use of remote sensing to quantify suspended sediment has been studied extensively. 
Suspended sediments increase the energy reflected from surface waters in the visible and near-
infrared spectrum. The specific amount of increase depends on sediment type, texture, color, 
water depth, and viewing conditions (Ritchie et al. 2003). Although reflectance increased at all 
wavelengths, Ritchie et al. (1976) concluded that wavelengths between 700 and 800 nm were 
most useful for quantifying suspended sediment concentration. For concentrations below 50 mg 
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L-1, a linear relationship was sufficient; however, from 50 to 150 mg L-1, a curvilinear relationship 
was needed. Similarly, Lodhi et al. (1998) reported that wavelengths between 700 and 900 nm 
provided the best results, and that second-order regression models were better than linear 
models. Furthermore, these authors noted, as did Ritchie et al. (2003), that data from the wide 
spectral bands available with multispectral aerial and satellite sensors were sufficient for 
accurate estimation of sediment concentration. 

Related to suspended sediment concentration is turbidity, a measure of the degree to which 
light transmitted through the water is scattered by suspended particles. Although turbidity is also 
influenced by the quantity and type of organic particulates (e.g., algae) in the water, suspended 
sediments are usually the dominant particulate matter in surface water, and therefore are the 
main cause of turbidity. The relationship between sediment concentration and turbidity is 
influenced by the particle size distribution of the sediment, and thus should be determined for 
specific watersheds and/or distinct dominant soil types (Hayes et al., 2001).  Some research 
has directly related spectral reflectance to turbidity. For example, Han (1996) achieved a 
correlation of 0.95 between turbidity and the difference in reflectance at 710 and 720 nm for 
samples obtained from a reservoir. Shafique et al. (2003) also found good results when 
correlating turbidity to the difference in reflectance between two wavelengths; however, the 
wavelength pairs selected were different between two different rivers in Ohio.  

Several approaches used to estimate chlorophyll with remote sensing were reviewed by Ritchie 
et al. (2003). Multispectral approaches have not been successful in waters with high suspended 
sediment concentrations because these broad-wavelength data cannot successfully 
discriminate chlorophyll where the spectral signal is dominated by sediment. However, research 
has shown that narrow-band reflectance data at the “red edge” of the visible spectrum can 
estimate chlorophyll in the presence of high suspended sediment concentrations. In a study 
using large outdoor water tanks, Han et al. (1994) found that the (NIR/red) reflectance ratio was 
independent of suspended sediment concentration over a wide range of sediment levels and 
two sediment types. They considered the ratio superior to the (NIR-red) difference, which was 
not completely independent of sediment level. Further outdoor tank research by the same group 
(Rundquist et al., 1996) found that the derivative of the reflectance curve near 690 nm was a 
better estimator of relatively high chlorophyll concentrations, while the NIR/red (705/670 nm) 
ratio was better at low concentrations. In a comparison over multiple measurement dates and 
sampling sites in a turbid reservoir, the derivative approach was better (Han and Rundquist, 
1997). This was particularly apparent when data from multiple measurement dates were 
combined (derivative r = 0.82; ratio r = 0.55). Shafique et al. (2003) used the 705/675 nm 
reflectance ratio to quantify chlorophyll a and reported similar results (r = 0.71 and 0.72) for two 
Ohio rivers.   

Reports describing the use of remote sensing to characterize or quantify nutrient levels in water 
are more limited than those describing estimation of sediment or chlorophyll.  Shafique et al. 
(2003) correlated total phosphorus in two Ohio rivers to reflectance ratios. Similar to their work 
with turbidity described above, different wavelengths were selected for the two rivers.  

Objectives 

The primary objective of this study was to relate hyperspectral remote sensing information to 
lake water quality parameters. A subobjective was to compare the results obtained from two 
sources of hyperspectral data; airborne remote sensing and a portable field spectrometer.   
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Materials and Methods 

Study Site and Sampling Locations 

Research was conducted at the 7,530-ha Mark Twain Lake in northeast Missouri. Mark Twain 
Lake serves as the public drinking water supply for approximately 42,000 people, and 
consistently high spring and summer time atrazine levels have been an on-going concern. More 
recently, late summer algal blooms have created the need for more extensive water treatment to 
reduce odor and taste problems in drinking water and may be a reflection of increased nutrient 
transport within the basin.  

The source of water for Mark Twain Lake is the Salt River system (fig. 1), which encompasses 
an area of 6,520 km2 within portions of 12 northeastern Missouri counties. The Salt River basin 
has a known and well-documented history of herbicide and sediment contamination problems. 
The claypan soils that predominate within the basin create a natural barrier to percolation, which 
promotes surface runoff. This results in a high degree of vulnerability to surface transport of 
sediment, herbicides, and nutrients. Within the basin, land use is predominately agricultural. The 
primary row crops are soybeans, corn, and sorghum. Forage production is mainly tall fescue. 
Livestock production is mainly beef cattle, but swine operations are increasing, particularly in 
the Middle and Elk Fork watersheds (fig. 1).  

Seven sampling sites were identified where highway bridges crossed arms of the lake (fig. 2). 
These seven sites were identified by the highway name or number, plus a cardinal direction 
designation if necessary. For example, site 24E (fig. 2) was the easternmost location on U.S. 
Highway 24. At each site, multiple sampling stations were located along the highway bridge to 
investigate variation in reflectance and water quality properties across the width of the arm. The 
number of stations at each site varied from 5 to 11 depending on the width of the arm. The total 
number of sampling stations was 51.  

  
Figure 1. Salt River basin, showing major watersheds supplying Mark Twain Lake.  
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Figure 2. False-color image of Mark Twain Lake, showing seven 

sampling locations where highway bridges cross arms of the lake.  

Data Collection and Processing 

Reflectance data and water quality samples were collected on August 30, 2004, between 
approximately 1045 hr and 1700 hr CDT. Sky conditions at the time of data collection were 
generally clear with some intermittent cloud cover later in the day. As recorded at Monroe City, 
Mo., approximately 15 km away, air temperature was 21 to 27º C, and winds were from the west 
at 1.4 to 1.8 m/s during the sampling period. With these relatively calm winds, the water surface 
was generally smooth, with little wave action. Monroe City precipitation was 14.5 cm in the 5 
days prior to sampling.  With this amount of rainfall and the accompanying runoff, lake water 
levels rose approximately 2 m in the 3 days prior to sampling. We observed that tributaries 
entering the lake were still flowing briskly at the time of data collection.  

Field Spectrometer Data  

Data were collected with an ASD FieldSpec Pro1 FR field spectrometer (Analytical Spectral 
Devices, Boulder, Colo.) Using a three-detector system, this instrument recorded upwelling 
radiance from the water surface in the wavelength range of 350 nm to 2500 nm. Optical 

                                                 
1 Mention of trade names or commercial products in this publication is solely for the purpose of providing 
specific information and does not imply recommendation or endorsement by the U.S. Department of 
Agriculture or the University of Missouri. 
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resolution was 3 to 10 nm, and the sampling interval was 1.4 to 2.0 nm. Light input to the 
system was through a fiber optic cable with a 1-degree field of view foreoptic attachment.  

At each sampling station, the pistol-grip foreoptic was pointed at the water surface 90 degrees 
from the principal vertical plane of the sun, at a 40-degree angle from nadir. This protocol was 
suggested to minimize the effects of sun glint on the data collection process (Rick Perk, Center 
for Advanced Land Management Information Technologies, University of Nebraska, personal 
communication). In this orientation, the 1-degree foreoptic collected light from an ellipse of 
approximately 500 cm2 on the water surface. Data were collected between 1240 and 1630 hr 
CST, requiring approximately 15 to 20 minutes at each bridge. 

At each sampling station, two radiance data files were stored, with each file containing the mean 
of 10 individual wavelength scans. Before and after the water data were collected at each 
bridge, radiance data were collected from a handheld Spectralon reference panel. Data from the 
Spectralon readings were compared to verify that radiance did not change appreciably during 
the course of water measurements. In postprocessing, radiance values in each water data file 
were divided by the preceding reference panel data to obtain apparent reflectance of the water 
surface as a function of wavelength. The duplicate reflectance datasets at each station were 
examined for irregularities. Because no obvious outliers were identified, the two duplicate 
datasets were averaged for analysis. 

Because we were primarily interested in using field spectrometer data to supplement aerial 
image data, we extracted the reflectance data from 350 to 975 nm on a 5-nm interval, resulting 
in 126 individual points. This was the range sensed by the silicon photodetector in the ASD 
(higher wavelengths used other detectors), and encompassed all the wavelengths in the aerial 
images. Two field spectrometer datasets were constructed for analysis – one containing all data 
and the other containing data at the 26 wavelengths most closely corresponding to the 
wavelengths of the aerial hyperspectral images. 

Aerial Hyperspectral Images 

Airborne hyperspectral imaging was completed between 1045 and 1135 hr by personnel from 
the Center for Advanced Land Management Information Technologies (CALMIT) at the 
University of Nebraska, using an AISA pushbroom sensor (Specim / Spectral Imaging Ltd., 
Oulu, Finland) mounted in a single-engine light aircraft. A key feature of the AISA system is that 
it includes a downwelling irradiance sensor mounted on top of the aircraft, allowing calculation 
of apparent reflectance at the sensor.  Research has verified that the at-sensor reflectance can 
be used as a surrogate for target reflectance, eliminating the need to deploy calibration 
standards on the ground (Charles Walthall, USDA-ARS, Beltsville, Md., personal 
communication). 

For this application, the AISA system was configured to provide a 3-m pixel resolution and an 
approximately 1100-m swath width. Data were collected in 26 user-defined bands within the 
400- to 970-nm spectral range of the sensor. Table 1 includes center wavelengths and 
bandwidths for each channel. 

The postprocessing provided by CALMIT radiometrically calibrated and georectified the AISA 
data. We performed no additional radiometric calibration. However, additional local 
georectification was completed, using DGPS (approximately 1-m accuracy) points at each end 
of each bridge where sampling occurred. A separate linear shift was applied to the image data 
from each bridge to improve alignment of the image coordinates with these DGPS points (fig. 3). 
Then, data were extracted from the image at each ASD data collection station along each 
bridge. Two sets of data were extracted, one comprised of a single pixel at each station and the 
other comprised of a 3x3 pixel grid at each station.  
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      Table 1. Band centers and bandwidths of the AISA system as configured for this study. 
Band Center 

wavelength,  
nm 

Bandwidth, 
nm 

Band Center 
wavelength, 

nm 

Bandwidth, 
nm 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

498 
528 
539 
548 
558 
569 
583 
590 
598 
609 
623 
631 
638 

4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 

14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

649 
658 
673 
682 
689 
699 
704 
709 
714 
719 
745 
810 
844 

4 
4 
4 
4 
4 
3 
3 
3 
3 
3 
9 
9 
9 

 

 
Figure 3. Nine field spectrometer points (dots) overlaid on gray-

scale representation of the shifted aerial image for location 107S.  
DGPS points (stars) at each end of the bridge were used for local 

georectification of the hyperspectral image. 

 

Water Sampling and Water Quality Analysis 

Water sampling was conducted between 1300 and 1700 hr, generally within 30 minutes of the 
time of field spectrometer data collection. Because one water sample was lost, data were 
available for only 50 sampling stations. Grab samples were obtained from the top 0.15-0.30 m 
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of the water column at each sampling station. Each sample, approximately 1 L in volume, was 
placed on ice while transported to the laboratory and then refrigerated in the laboratory until 
analyses were performed.   

Analyses were conducted for dissolved N and P forms (NO3-N, NH4-N, and PO4-P), total N and 
P, turbidity, total chlorophyll, chlorophyll a, and pheophytin. For dissolved nutrient analyses, all 
samples were filtered through 0.45-µm nylon filters within 48-72 hours of collection. Dissolved N 
and P species were then determined colorimetrically using a Lachat flow injection system 
(Lachat Instruments, Loveland, Colo.). Total N and P were determined on thoroughly mixed, 
unfiltered 60-mL samples by autoclave digestion with potassium persulfate (Nydahl, 1978). 
Persulfate digestion quantitatively converted all N forms to nitrate (NO3

-) and all P forms to 
orthophosphate (PO4

3-) which were then determined colorimetrically by the Lachat flow injection 
system. Turbidity was measured in the laboratory using a YSI 6920 Sonde (YSI, Inc., Yellow 
Springs, Ohio) with a calibrated turbidity probe. Unfiltered samples were thoroughly mixed, 
allowed to stand for one minute, and nephelometric turbidity unit (NTU) data were obtained at 6-
second intervals for 2 minutes. The average value over the 2 minutes was reported. Total 
chlorophyll, chlorophyll a, and pheophytin were determined by filtering a known volume of 
sample through a 0.45-µm filter. The filters were then extracted with 7.6 mL of ethanol in a water 
bath (21- 23oC) for 15 minutes, allowed to cool for at least 2 hours, and then analyzed using a 
fluorometer at the appropriate wavelength for each of the three analytes. 

  

Results and Discussion 

Water Quality Data 

With the exception of total N, each measured water quality parameter varied considerably, with 
a standard deviation of the same order of magnitude as the mean. Variation within each 
sampling location was generally much less than the overall variation, with the exception of 
location 107S (table 2). At that location, a distinct flow path along the south shore was 
considerably different, both optically (fig. 3) and in terms of water quality parameters, from the 
rest of the arm.  

When considering the overall dataset, significant (α= 0.05) correlations were observed between 
most variable pairs (table 3). Highest correlations (r > 0.9) were found among the three 
chlorophyll measurements and between total P and dissolved PO4-P. Relatively high positive 
correlations (r > 0.5) with turbidity were found for NH4-N, PO4-P, and total P. Relatively high 
negative correlations (|r| > 0.5) were found between PO4-P and the three chlorophyll 
measurements. This level of correlation suggested that similar relationships with reflectance 
data might be found for the three chlorophyll measurements and for the two phosphorus 
measurements.   

Field Spectrometer Data  

As an initial screening, correlations between optical density (OD) and the water quality 
parameters were graphed (fig. 3). Optical density, log (1/reflectance), was used rather than 
reflectance because, assuming Beer’s Law applies, absorbance (or OD) should be linearly 
related to the concentration of the absorbing substance (e.g., chlorophyll, sediment). Generally, 
the highest correlations were found at wavelengths above 650 nm. Above 930 nm, the 
corellograms became unstable, assumedly due to the lower signal-to-noise ratio observed at the 
highest wavelengths.  
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Table 2. Means and (in parentheses) standard deviations of water quality measurements, both 
overall and for each sampling location.  

 Overall 24W 24E 107N 107S 154E 154W RteJ 

Total chlorophyll, µg L-1 24.1 
(21.8) 

2.7 
(0.56) 

5.9 
(1.2) 

29.6 
(9.7) 

57.7 
(25.9) 

25.3 
(6.9) 

11.4 
(3.0) 

12.7 
(1.6) 

Chlorophyll a, µg L-1 21.1 
(19.7) 

2.0 
(0.43) 

4.7 
(1.1) 

25.9 
(8.7) 

51.6 
(23.4) 

21.5 
(6.4) 

9.6 
(2.9) 

11.0 
(1.3) 

Pheophytin, µg L-1 8.0 
(5.4) 

1.7 
(0.34) 

3.1 
(0.26) 

10.0 
(3.1) 

15.6 
(5.6) 

10.2 
(1.5) 

4.8 
(0.6) 

4.7 
(0.8) 

Turbidity, NTU 18.3 
(22.2) 

31.9 
(18.8) 

25.6 
(27.9) 

5.0 
(2.0) 

9.6 
(3.5) 

21.6 
(6.0) 

66.1 
(11.8) 

0.1 
(0.2) 

Total N, mg L-1 1.15 
(0.19) 

0.91 
(0.03) 

1.30 
(0.17) 

0.98 
(0.07) 

1.29 
(0.20) 

1.26 
(0.12) 

1.32 
(0.04) 

1.06 
(0.06) 

Dissolved NO3-N, mg L-1 0.25 
(0.10) 

0.13 
(0.08) 

0.24 
(0.02) 

0.17 
(0.02) 

0.22 
(0.06) 

0.35 
(0.01) 

0.24 
(0.01) 

0.42 
(0.05) 

Dissolved NH4-N, mg L-1 0.015 
(0.017) 

0.013 
(0.010) 

0.026 
(0.009) 

0.005 
(0.004) 

0.006 
(0.005) 

0.022 
(0.011) 

0.045 
(0.009) 

0.010 
(0.028) 

Total P, mg L-1 0.16 
(0.12) 

0.33 
(0.01) 

0.33 
(0.04) 

0.05 
(0.01) 

0.10 
(0.02) 

0.15 
(0.03) 

0.32 
(0.03) 

0.03 
(0.01) 

Dissolved PO4-P, mg L-1 0.059 
(0.078) 

0.234 
(0.006) 

0.129 
(0.004) 

0.002 
(0.001) 

0.007 
(0.002) 

0.044 
(0.007) 

0.133 
(0.001) 

0.003 
(0.004) 

# of observations 50 5 6 11 9 6 5 8 
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Figure 3. Correlation between water quality parameters and OD-transformed field 

spectrometer data. 
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Table 3. Significant (α= 0.05) Pearson correlation coefficients for water quality measurements.  
 Chl. a Pheo. Turb. Total N NO3-N NH4-N Total P PO4-P 

Total chlorophyll, µg L-1 0.999 0.971 -0.304 0.411 -- -0.314 -0.388 -0.548 
Chlorophyll a, µg L-1  0.966 -0.305 0.407 -- -0.316 -0.386 -0.544 
Pheophytin, µg L-1   -0.298 0.407 -- -0.303 -0.430 -0.596 
Turbidity, NTU    0.336 -- 0.598 0.732 0.624 
Total N, mg L-1     -- 0.351 0.328 -- 
Dissolved NO3-N, mg L-1      -- -0.301 -0.335 
Dissolved NH4-N, mg L-1       0.515 0.393 
Total P, mg L-1        0.909 

 

Corellograms for some parameters, such as turbidity, were relatively flat throughout the range 
from 650 to 930 nm, while others had pronounced peaks and valleys. Particularly apparent were 
the maxima in the correlations to chlorophyll measurements at about 670 nm and the 
corresponding minima at about 705 nm. These features and the corresponding slope between 
them form the basis of two previously used approaches to optical chlorophyll estimation, the 
NIR/red ratio and the slope of the reflectance curve near 690 nm (e.g., Han and Rundquist, 
1997). 

Using the field spectrometer data, we applied these two approaches to estimate the three 
chlorophyll measurements, total chlorphyll, chlorophyll a, and pheophytin. Consistent with 
previous research, the slope (or derivative) approach provided better results than the ratio 
approach (table 4). Our estimations were somewhat less predictive than those (r2 = 0.38 to 
0.90) reported by Han and Rundquist (1997) for chlorophyll a estimation in a turbid reservoir in 
Nebraska. This difference in estimation accuracy may have been caused by the considerably 
higher chlorophyll levels and much lower turbidity levels in their data. 

We also applied approaches from previous research to estimate turbidity levels. Han (1996) 
estimated turbidity based on the difference in reflectances between 710 and 720 nm, stating 
that this method was less susceptible to wind-induced waves on the water surface than data 
obtained at a single wavelength. Our model based on this approach yielded relatively poor 
results (equation 1; r2 = 0.44).   

 Turbidity (NTU) = -10.83 + 2264 * (R710 – R720)               (1) 

 

In an outdoor tank study, Lodhi et al. (1998) found that spectrometer data, integrated into 
simulated Landsat-TM bands (LB), could be used to estimate suspended sediment 
concentration. We used this approach, assuming a linear relationship between sediment 
concentration and turbidity, to develop a first-order regression model for each simulated LB 
(table 5). In contrast to Lodhi et al. (1998), who found that a second-order model using 
simulated LB 4 (i.e., near infrared) reflectance was most predictive of sediment concentration, 
we found that a first-order model using the LB 4 data provided the best results. In this dataset, 
second-order parameters were not significant for any of the models, and models combining data 
from multiple bands were likewise not significant.  
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Table 4. Regression models for estimation of chlorophyll content using field spectrometer data.  
Model r2 Std. Error 

NIR/red ratio models (NIR = reflectance at 705 nm; red = reflectance at 670 nm)   
     Total Chlorophyll (µg L-1) = -25.118 + 45.486 * (NIR/red) 0.42 17.0 
     Chlorophyll a (µg L-1) = -23.616 + 41.288 * (NIR/red) 0.42 15.2 
     Pheophytin (µg L-1) = -3.6123 + 10.751 * (NIR/red) 0.37 4.4 
Derivative models (slope = first derivative at 690 nm)   
     Total Chlorophyll (µg L-1) = 16.622 + 35204 * slope 0.60 14.0 
     Chlorophyll a (µg L-1) = 14.275 + 31940 * slope 0.61 12.5 
     Pheophytin (µg L-1) = 6.2820 + 8187.3 * slope 0.52 3.8 

 

Table 5. Regression models for estimation of turbidity based on simulated Landsat-TM band 
(LB) reflectance calculated from field spectrometer data.  

Model r2 Std. error 
     Turbidity (NTU) = -15.415 + 843.00 * LB1 0.56 14.5 
     Turbidity (NTU) = -15.544 + 531.08 * LB2 0.56 14.5 
     Turbidity (NTU) = -7.655 + 385.23 * LB3 0.62 13.5 
     Turbidity (NTU) = -0.734 + 801.90 * LB4 0.65 13.0 

 

In addition to turbidity, simulated LB data were used to estimate other water quality parameters. 
Strong estimates were obtained only for total P and dissolved PO4-P, with R2 values of 0.93 and 
0.89, respectively. In this data, these were the two measurements most strongly correlated with 
turbidity (table 3). The models obtained for estimating phosphorus concentrations using 
simulated LB data are given as equations 2 and 3. 

 Total P (mg L-1) = 0.2014 -10.711*LB2 + 9.494*LB3             (2) 

 Dissolved PO4-P (mg L-1) = 0.1627 + 11.508*LB1 – 18.470*LB2 + 10.432*LB3 – 3.794*LB4      (3) 

Stepwise multiple linear regression, implemented in SAS Proc Stepwise (SAS Institute, Cary, 
N.C.), was also used to investigate the relationship of field spectrometer data to water quality 
parameters. Based on the scatter in figure 3, we deleted data above 930 nm, leaving 117 OD-
transformed reflectance measurements as candidate independent variables. For each water 
quality parameter, the model with the most independent variables where all were significant (α = 
0.05) was selected. In a second analysis, we applied stepwise regression to the 26 field 
spectrometer bands most closely aligned with the bands present in the hyperspectral image 
data (table 1).  

Using the full dataset, all water quality parameters were estimated with R2 > 0.6 (table 6). Best 
estimates were obtained for the two phosphorus measurements, with R2 > 0.9. Estimates of 
turbidity were least predictive, and were similar to those obtained using simulated LB data (table 
5). Chlorophyll estimates using stepwise regression were considerably better than those 
obtained with previously reported approaches (table 4). Estimates of most parameters were of 
similar accuracy when using 26 candidate wavebands, suggesting the potential for good results 
with aerial hyperspectral image data. 
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Table 6. Statistics for best stepwise multiple linear regression models relating field spectrometer 
data to water quality parameters, both for the dataset containing all wavebands and for the 26 
wavebands most closely corresponding to the aerial hyperspectral image data. 

 117 candidate bands       26 candidate bands 

 R2 Std. 
error 

# of 
bands R2 Std. 

error 
# of 

bands 
Total chlorophyll, µg L-1 0.77 10.9 4 0.70 12.3 2 
Chlorophyll a, µg L-1 0.82 8.99 6 0.70 11.1 2 
Pheophytin, µg L-1 0.79 2.61 3 0.77 2.70 3 
Turbidity, NTU 0.62 13.7 2 0.61 14.0 3 
Total N, mg L-1 0.75 0.105 7 0.58 0.133 5 
Dissolved NO3-N, mg L-1 0.70 0.059 3 0.80 0.049 5 
Dissolved NH4-N, mg L-1 0.80 0.0084 7 0.76 0.0092 6 
Total P, mg L-1 0.98 0.019 6 0.96 0.024 4 
Dissolved PO4-P, mg L-1 0.91 0.024 2 0.88 0.027 3 

 

For all water quality parameters except turbidity, estimates obtained using stepwise regression 
on the full field spectrometer dataset, and on the 26-band subset, provided more accurate 
estimates than did previously developed spectral indices or regression on simulated LB 
multispectral data. For turbidity, results were slightly better using LB data, with approximately 
7% lower standard error. These results indicate that hyperspectral data can provide better 
estimates of chlorophyll, nitrogen, and phosphorus concentrations in surface waters than can 
multispectral data, while multispectral data can successfully estimate turbidity or suspended 
sediment. Although these findings are consistent with past research, additional datasets, 
collected at differing lake levels and constituent concentrations, should be examined to 
ascertain the robustness of the estimation models.  

 

Aerial Hyperspectral Image Data  

The NIR/red ratio and derivative models were also applied to estimate chlorophyll content using 
aerial image data. Results using the ratio model were slightly worse for total chlorophyll and 
chlorophyll a than were results using the same model with field spectrometer data. Results 
using the derivative model were considerably less predictive for total chlorophyll and chlorophyll 
a but more predictive for pheophytin (table 7). 

Stepwise regression applied to the 26-band (table 1) aerial hyperspectral data estimated all 
water quality parameters with R2 > 0.6 (table 8). Some estimates were improved when the data 
used was an average of the 9 pixels centered on the measurement site, but this improvement 
was not consistent. Estimates with aerial data were generally of very similar accuracy to those 
obtained using the corresponding 26 bands of field spectrometer data (table 6), indicating that 
any additional errors introduced as part of the aerial image acquisition process did not greatly 
affect the use of the images for water quality estimation.  
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Table 7. Regression models for estimation of chlorophyll content using single-pixel aerial 
hyperspectral image data.  

Model r2 Std. Error 
NIR/red ratio models (NIR = reflectance at 704 nm; red = reflectance at 673 nm)   
     Total Chlorophyll (µg L-1) = -175.27 + 201.45 * (NIR/red) 0.41 17.0 
     Chlorophyll a (µg L-1) = -155.90 + 178.81 * (NIR/red) 0.40 15.5 
     Pheophytin (µg L-1) = -46.521 + 55.100 * (NIR/red) 0.49 3.9 
Derivative models (slope = first derivative at 689 nm)   
     Total Chlorophyll (µg L-1) = 13.319 + 137900 * slope 0.47 16.2 
     Chlorophyll a (µg L-1) = 11.517 + 122140 * slope 0.45 14.8 
     Pheophytin (µg L-1) = 5.0475 + 37901 * slope 0.57 3.6 

 

Table 8. Statistics for best stepwise multiple linear regression models relating aerial 
hyperspectral image data to water quality parameters, both for a single pixel at each site and for 
a 3- by 3-pixel average at each site.  

 single pixel         3- by 3-pixel average 

 R2 Std. 
error 

# of 
bands R2 Std. 

error 
# of 

bands 
Total chlorophyll, µg L-1 0.68 12.8 3 0.68 12.8 3 
Chlorophyll a, µg L-1 0.67 11.7 3 0.67 11.8 3 
Pheophytin, µg L-1 0.76 2.79 3 0.76 2.76 3 
Turbidity, NTU 0.61 14.2 4 0.52 15.4 2 
Total N, mg L-1 0.70 0.113 6 0.62 0.125 4 
Dissolved NO3-N, mg L-1 0.69 0.061 3 0.73 0.057 5 
Dissolved NH4-N, mg L-1 0.57 0.0128 4 0.77 0.0090 4 
Total P, mg L-1 0.95 0.028 4 0.96 0.025 6 
Dissolved PO4-P, mg L-1 0.98 0.013 7 0.97 0.015 5 

 

As with the field spectrometer data, estimates of water quality parameters using aerial 
hyperspectral data were of promising accuracy. The fact that there was a wide range in the 
levels of these data among the different arms of the lake (table 2) gives some hope that the 
estimates may be robust to varying conditions encountered at different lake levels and/or times 
of the year. However, additional data collection under such varying conditions is needed to 
validate this approach to remote sensing of lake water quality.  

 

Conclusions 
Using hyperspectral data from either a field spectrometer or aerial images acquired on a single 
date, it was possible to estimate variations in water quality parameters (i.e., turbidity, 
chlorophyll, nutrients) in Mark Twain Lake in northeast Missouri. Best results (R2 > 0.6 for all 
parameters) were obtained by applying stepwise regression to field spectrometer data from 117 
candidate bands arrayed on a 5-nm spacing from 350 to 930 nm. Similar, but slightly less 
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predictive, results were obtained using data from 26 candidate bands, obtained either from a 
field spectrometer or an aerial image. 

Using bands and approaches previously reported in the literature generally resulted in less 
predictive models than the stepwise modeling approach. However, these published approaches 
may be more robust to variations in ambient conditions and/or data collection procedures. 
Additional data collection is needed to verify the robustness of the results obtained in this study 
under a range of varying conditions. 
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